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Abstract
We combine the single-site dynamical mean field theory (DMFT) with the
non-local GW method. This is done fully self-consistently and we apply our
formalism to a one-band Hubbard model. Eventually at self-consistency the
full self-energy and polarization operator of the system are retrieved. Some
numerical results, in the metallic as well as the insulator regime, are presented
and briefly discussed. Depending on the involved interaction (GW) parameters,
substantial changes are found when the GW self-energy is incorporated.
However, the main point of this work is to demonstrate the applicability of the
method, not to make any strict comparison with exact results and experiments.

1. Introduction

The interest for a fundamental understanding of strongly correlated systems has greatly
increased, but still there is a lack of a satisfactory description. On the other hand, for
weakly correlated systems the density functional theory (DFT) [1] within the local spin-
density approximation (LSDA) [2], however limited to ground-state properties, and the GW
approximation (GWA) [3–5] suitable for excited state properties, have made a substantial
contribution to the understanding of sp metals and semiconductors. Their failure is mainly due
to a poor description of the strong on-site Coulomb interactions among partially filled d or f shell
electrons. The insufficiency of the GW method has however encouraged schemes which are all
designed to treat strong on-site correlations, e.g. the LDA +U approach proposed by Anisimov
and coworkers [6] in the early 1990s, in order to treat the strong correlations existing in the Mott
insulators. There exist several similar methods [7–10] that are based on first principles DFT-
LSDA Hamiltonians, but the strong Coulomb interaction for electrons residing in the localized
orbitals are explicitly taken care of via a set of Hubbard-like parameters, describing static or
dynamic self-energy effects. Obviously, there is a necessity to introduce in all the LDA + U
related methods a so called double-counting correction term for the correlated orbitals [9, 11].

Recently, the dynamical mean-field theory [12, 13] (DMFT) has been found to be very
successful in the treatment of strongly correlated electronic systems. It is a nonperturbative
method and has been used intensively for various physical properties [14], such as the
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famous paramagnetic (PM) Mott–Hubbard metal–insulator transition in transition metals,
superconducting cuprates and fullerene compounds as well as organic conductors. The DMFT
method becomes exact in the limit of infinite spatial dimensionality, and maps the original
lattice problem onto an interacting dynamical impurity problem, which must be solved self-
consistently due to its implicit coupling to the surrounding lattice. In the single-site DMFT,
there is a shortage of momentum-dependent or short-range correlations, implying a purely local
(on-site) self-energy. In the context of spatial ordering and spectral properties that vary across
the Brillouin zone, non-local effects would of course be crucial. Significant efforts have been
made to extend the single-site DMFT to the case where the self-energy [15–24] exhibits finite-
range interactions. The single-impurity model is replaced by a cluster impurity [15], giving
rise to short-range correlations ranging to the boundary of the given cluster. The general idea is
that the cluster captures, despite the finite correlation length, the correlations within the original
infinite lattice. Some of the approaches, however, break the translationally invariant nature
of the original problem, a scenario not present in the single-site DMFT. The corresponding
impurity problem is considerably harder to solve with the increased number of local degrees
of freedom. Present techniques are based on the non-crossing approximation (NCA) [25, 26],
the iterative perturbation theory (IPT) [12], the quantum Monte Carlo method [27] or exact
diagonalization [12, 28]. An interpolative approach [29] has recently been suggested, where
a simple pole expansion of the self-energy is used and the unknown parameters entering are
determined using a chosen set of constraints.

More recent and probably one of the most promising first principles schemes is the so-
called ‘LDA + DMFT’ approach [10, 30, 31], despite the fact that the interaction term for the
localized electrons still has to be parametrized and the double-counting term remains. The
parameters are, at least in principle, obtainable from an independent calculation such as e.g. the
constrained LDA method [32–34] or from experimental data. Note that the screening in the
system is not determined from first principles. The feasibility of the approach has indeed been
demonstrated in the pioneering work by Savrasov and coworkers in the case of plutonium
(Pu) [35] and more recently in a number of other cases [36, 37].

It is generally believed that the GWA quite adequately describes the long-range part
of the screening. Short-range correlations, on the other hand, are not taken into account
properly by the random phase approximation (RPA) [38]; however, they are captured by the
DMFT approach. In contrast to DMFT, the GWA is a perturbative method. The self-energy
is given by � = GW , where W is the screened Coulomb interaction and G is the full Green’s
function. The frequently used RPA screening (W = W0) and the zeroth-order Green’s function
(G = G0) provide quasi-particle spectra of most semiconductors and insulators as well as
bandgaps, in good agreement with experiment [4]. However, there is the important issue of
self-consistency [39–47]. If the GWA should be conserving [48], the self-energy requires
the Green’s function as well as the screened interaction to be evaluated self-consistently. It
is by now well known that full self-consistency within GW worsens spectral properties, but
improves total energies. However, when vertex corrections are included, the scenario could
in principle be completely different. In the current study, we take into account a local vertex
to all orders, but neglect the non-local vertex corrections by using the GW self-energy. More
test calculations have indeed to be performed to validate the above hypothesis.

The aim of this paper is to combine, fully self-consistently, the GW method with the single-
site DMFT, and present numerical results for a one-band Hubbard model. The ‘DMFT + GW’
approach, recently proposed by Biermann et al [49], includes no Hubbard-like (parameter)
interaction and consequently there is no need for the ambiguous double-counting term. The
main idea is that the large on-site part of the self-energy is calculated using DMFT and the off-
site (long-range) contribution is taken from the GWA. We will present results using various
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degrees of self-consistency for the GW self-energy. Related work along this line can be
found in [50, 51]; however, by considering contributions from nearest neighbours only, a local
momentum-independent screened interaction and GW self-energy were used, in contrast to
the present work, where we actually calculate the polarization kernel and GW self-energy by
explicitly performing the corresponding Brillouin sums.

We will study two sites per unit cell in one (1D chain) and two dimensions (2D plane),
in order to be able to study the formation and stability of different magnetic structure. We
solve the single-site impurity problem using the exact diagonalization method [28]. In addition
to the impurity self-energy, a two-particle correlation [49] function is calculated, needed for
the evaluation of the impurity screened interaction. Thus, the iterative loop will include two
quantities to be determined self-consistently: the bath Green’s function G as well as the bath
effective interactionU . We would like to stress that the effective HubbardU is not a parameter;
it is in fact found self-consistently.

In section 2 we describe the method for the calculations. In section 3 we present and
discuss the results, and in section 4 we give a short summary.

2. Theory

2.1. Single-site DMFT

In this section we establish the necessary concepts and formalisms for the so called single-site
DMFT, a scheme that later on is combined with the GWA. We will consider the Hubbard
model with an on-site interaction U and nearest neighbour hopping t (t = 1 while leaving
the on-site interaction U variable). The unit cell will contain two sites, but a generalization is
straightforward [52]. The model and the corresponding Green’s function reads

Ĥ = −t
∑

mi,n j,σ

a†
miσ anjσ + U

∑
mi

nmi↑nmi↓ (1)

Gmi,n j,σ (τ ) = −θ(τ )〈amiσ (τ )a†
n jσ (0)〉 + θ(−τ )〈a†

n jσ (0)amiσ (τ )〉. (2)

We define positions in the lattice by Rmi = Tm + τ i , where τ i labels sites within the unit cell
and m a particular unit cell1. Using the equation of motion for G (with operator K̂ = Ĥ −µN̂ )
and assuming a local self-energy, �mi,n j,σ = �iσ δi jδmn , one can show that

G−1
i jσ (k; iνn) = (iνn + µ)δi j + hi j(k) − �iσ (iνn)δi j (3)

where the kinetic energy matrix is given by2

h(k) =
(

0 2(cos kx + cos ky)

2(cos kx + cos ky) 0

)
. (4)

We have also defined the real space transforms as

Gi jσ (k; iωl) = 1

N

∑
n

∑
m

e−ik·Tmi Gmi,n j,σ (iωl)eik·Tn j (5)

Gmi,n j,σ (iωl) = 1

N

∑
k

eik·Tmi Gi jσ (k; iωl)e−ik·Tn j (6)

1 In the case of a one-dimensional (1D) lattice, real space translation vector T = 2a, basis vectors τ 1 = 0 and
τ 2 = a, reciprocal vector G = π/2a. The lattice has two symmetry operations. In the case of a two-dimensional
(2D) square lattice, real space translation vectors T1 = (1, 1)a and T2 = (1,−1)a, basis vectors τ 1 = (0, 0)a and
τ 2 = (1, 0)a, reciprocal vectors G1 = (1, 1)π/a and G2 = (1,−1)π/a. The lattice has eight symmetry operations.
2 The 2D case is described; however, to consider the 1D case the modifications are minor. The hopping matrix has
non-diagonal elements 2 cos k in the chain case.
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where the lattice has N unit cells. In the Matsubara formulation, we adopt the definition

G(iνn) =
∫ β

0
dτ eiνnτG(τ ) (7)

G(τ ) = 1

β

∑
n

e−iνnτG(iνn) (8)

where νn denotes the Matsubara (odd) frequency for fermion propagators. For bosons we use
ωn (even) as a convention.

νn = (2n + 1)π

β
, (9)

ωn = 2nπ

β
. (10)

Inversion of equation (3) gives the lattice Green’s function

G(k, iνn) = 1

D(k, iνn )

(
iνn + µ − �2σ (iνn) −2(cos kx + cos ky)

−2(cos kx + cos ky) iνn + µ − �1σ (iνn)

)
(11)

where D(k, iνn) = (iνn + µ − �2σ (iνn))(iνn + µ − �1σ (iνn)) − 4(cos kx + cos ky)
2. The local

(impurity) Green’s function is calculated using the diagonal elements;

Giσ (iνn) = 1

N

∑
k

Giiσ (k; iνn). (12)

Regarding the corresponding self-energy, we remark that in the case of single-site DMFT
no causality problems occur; the lattice self-energy is identical to the impurity self-energy:
�i jσ (k; iνn) = �iσ (iνn)δi j . At DMFT self-consistency the Green’s function calculated using
equations (11) and (12) must coincide with the one extracted from the impurity model.
We have determined the site and spin dependent impurity Green’s function using the exact
diagonalization (ED) [28] Lanczos method for the single-impurity Anderson model. In the
present case (zero temperature; β → ∞), we have solved an effective impurity model for each
site i = 1, 2, given by

Hi =
∑

σ

[
εdniσ +

Ns −1∑
k=1

εikσ c†
kσ ckσ +

Ns −1∑
k=1

Vikσ (c†
kσ diσ + d†

iσ ckσ )

]
+ Uni↑ni↓ (13)

where εd = −µ is the energy of the localized level on the impurity site. The second term gives
the energy of all the bath (conduction band) electrons, which are labelled by k = 1, . . . , Ns −1.
The hopping between the bath states and the impurity state is described by the third term, where
Vikσ is a hopping matrix element.

The DMFT approach maps the original lattice problem defined by the Hubbard model onto
a self-consistent solution of the Dyson equation in equation (11) and the (auxiliary) impurity
problem defined by the bath Green’s function

G−1
iσ (iνn) = G−1

iσ (iνn) + �iσ (iνn). (14)

In order to initialize the iterations it is sufficient to guess the parameters of the Anderson
model, εikσ and Vikσ , as well as the bath Green’s function. We construct

Giσ (iνn) = 1

N

∑
k

[(iνn + µ)δi j + hi j (k) − Biσ (iνn)δi j ]−1 (15)

where Biσ is a chosen suitable external field (in the PM case Biσ = 0). Solving the
effective impurity model we derive the self-energy �iσ = G−1

iσ − G−1
iσ and proceed with
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the inversion of the matrix in equation (3). Finally, we update the bath Green’s function using
Giσ (iνn) = [1/

∑
k Giiσ (k; iνn)/N + �iσ (iνn)]−1 and mix it with the previous one. The bath

G−1 is represented by the U = 0 impurity Green’s function

G−1
iσ (Ns , iνn) = (iνn + µ) −

Ns−1∑
k=1

V 2
ikσ

iνn − εikσ

(16)

in order to provide us with a new set of Anderson parameters, found by a fitting procedure.
The best choice is found by minimizing the function [28, 53]

χ2
iσ = 1

Nw + 1

Nw∑
n=0

|G−1
iσ (Ns , iνn) − G−1

iσ (iνn)|/νn (17)

for each site i and spin channel σ . The convergence with respect to Ns is very fast. We
found that Ns − 1 = 7 bath states are already sufficient to describe the continuum of
conduction states. The DMFT cycle is now closed: at hand we have a new set of Anderson
parameters (which defines the impurity problem) as well as an updated bath G. At self-
consistency, the Green’s function from the impurity problem should be equal to one obtained
from summing the momentum-dependent lattice Green’s function over the Brillouin zone, as
done in equation (12).

When DMFT is combined with the GWA, the impurity charge response enters the
formalism. The two-particle response is defined by

χi (τ ) = −〈Tτ [ρ̂i(τ )ρ̂i ]〉
= −〈ρ̂i (τ )ρ̂i 〉θ(τ ) − 〈ρ̂i ρ̂i (τ )〉θ(−τ ) (18)

where ρ̂i(τ ) ≡ n̂i (τ )−ni , ρ̂i(τ ) = eĤiτ ρ̂i e−Ĥiτ and the total charge on the impurity is denoted
by ni = ni↑ + ni↓. From a numerical point of view, the charge response is evaluated on the
same footing as the Green’s function, with the aid of the Lanczos algorithm. All calculations
are done for a fixed chemical potential µ. The total number of electrons in the cell

n = 1
2

∑
iσ

niσ (19)

is then allowed to adjust self-consistently. In the PM case (no doping) niσ = 1/2 for all sites
and spin-channels.

2.2. DMFT combined with the GWA

We now consider a scheme [49] that properly adds the momentum-dependent GW self-energy
to the local DMFT self-energy, giving rise to a lattice self-energy which describes, in addition
to local effects, also long-rangecorrelations. The RPA will be used for the screened interaction,
implying �GW = G(1 − U PGW)−1U , where we used v(r − r′) = Uδ(r − r′) for the bare
Coulomb interaction. Note that even if v is short-ranged, W can have off-site components
coming from PGW.

The polarization operator (bubble) in the GWA is given by

PGW
i j (q; iωm) =

∑
σ

PGW
i jσ (q; iωm) (20)

where

PGW
i jσ (q; iωm) = 1

β

∑
n

1

Nk

∑
k

Gi jσ (q + k; iωm + iνn)G jiσ (k; iνn). (21)
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The sum over k includes N = Nk points in the first Brillouin zone (BZ), and q belongs to the
irreducible BZ. The Green’s function in equation (21) is obtained by inverting the matrix

G−1
i jσ (k; iνn) = (iνn + µ)δi j + hi j(k) − �i jσ (k; iνn) (22)

where �i jσ (k; iνn) is the proper lattice self-energy (see equation (26)). In the first iteration,
however, the local impurity self-energy �iσ (iνn) is used.

The screened interaction fulfils W = v + vXv = ε−1v, which in the case v(r − r′) =
Uδ(r − r′), using ε = 1 − vPGW, transforms to

Wi j (q; iωm) = U�i j(q; iωm) (23)

where � is the matrix obtained by inverting the dielectric matrix [δi j −U PGW
i j (q; iωn)]. If the

Coulomb interaction v takes into account nearest (V ) and next nearest neighbour interactions
(V ′) the dielectric function and screened interaction reads in the 1D and 2D case respectively

ε =
(

1 − U PGW
11 − 2V ′ cos(2q)PGW

11 −U PGW
12 − 2V cos(q)PGW

22

−U PGW
21 − 2V cos(q)PGW

11 1 − U PGW
22 − 2V ′ cos(2q)PGW

22

)

W =
(

Uε−1
11 + 2V ′ cos(2q)ε−1

11 Uε−1
12 + 2V cos(q)ε−1

11

Uε−1
21 + 2V cos(q)ε−1

22 Uε−1
22 + 2V ′ cos(2q)ε−1

22

)

ε =
(

1 − U PGW
11 − 4V ′ cos(qx) cos(qy)PGW

11 −U PGW
12 − 2V (cos(qx) + cos(qy))PGW

22

−U PGW
21 − 2V (cos(qx) + cos(qy))PGW

11 1 − U PGW
22 − 4V ′ cos(qx) cos(qy)PGW

22

)

W =
(

Uε−1
11 + 4V ′ cos(qx) cos(qy)ε

−1
11 Uε−1

12 + 2V (cos(qx) + cos(qy))ε
−1
11

Uε−1
21 + 2V (cos(qx) + cos(qy))ε

−1
22 Uε−1

22 + 4V ′ cos(qx) cos(qy)ε
−1
22

)
. (24)

Like the polarization bubble, the screened interaction is a real valued function on the imaginary
axis (even Matsubara frequencies) and the diagonal part (i = j ) is positive and approaches
the bare U for large ωm , implying that the correlated part (frequency dependent) of W goes to
zero (W c

i j(q; iωm) ∼ δi j/(iωm)2 when ωm → ∞ and V = V ′ = 0).
Finally we achieve for the GW self-energy3 (�GW

i jσ (q; iνn) = Uni−σ δi j + �c
i jσ (q; iνn) and

W c
i j = Wi j − Uδi j )

�c
i jσ (q; iνn) = − 1

β

∑
m

1

Nk

∑
k

Gi jσ (q − k; iνn − iωm)W c
i j (k; iωm)

= − 1

β

∑
m

1

Nk

∑
R

∑
k∈IBZ

Gi jσ (q − Rk; iνn − iωm)W c
i j (k; iωm) (25)

where W (Rk) = W (k) has been used. R denotes a rotation matrix corresponding to a point-
symmetry operation4. The particle number used for the Hartree–Fock part (�HF

iσ = Uni−σ δi j )
is calculated using the impurity Green’s function; however, at self-consistency the impurity
Green’s function and the local one should be identical (the k dependent lattice Green’s function

3 Due to the definition of W c = W − U the contribution

�x
i jσ (q) = − 2V (1 − δi j )

β

∑
n

1

Nk

∑
k

Gijσ (k; iνn)(cos(kx − qx ) + cos(ky − qy))

− 4V ′δi j

β

∑
n

1

Nk

∑
k

Gijσ (k; iνn ) cos(kx − qx ) cos(ky − qy )

is implicitly included in �c.
4 Symmetry for G and � in the 2D case: diagonal elements Giiσ (k) = Giiσ (k + G) for all G = π(n1 + n2, n1 − n2).
Non-diagonal elements (i �= j) Gijσ (k) = Gijσ (k + G) if (n1 + n2) even and Gijσ (k) = −Gijσ (k + G) if (n1 + n2)
odd. Further Gijσ (k) = Gijσ (Rk), where k lies in the IBZ, because h(k) = h(Rk).
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summed over k). The total lattice self-energy, corrected for double counting, and to be used
in the construction of the next G−1, can thus be written as

�i jσ (q; iνn) = �GW
i jσ (q; iνn) − δi j

1

Nk

∑
k

�GW
i jσ (k; iνn) + �iσ (iνn)

= �GW
i jσ (q; iνn) − δi j

∑
k∈IBZ

�GW
i jσ (k; iνn)wk + �iσ (iνn) (26)

where wk is the weight of k in the IBZ. Note that the local part of � (�iσ ) is usually much
larger in magnitude than the non-local part given by [�GW − 1/Nk

∑
k �GW].

Finally the local G to be used to find the bath G via the self-consistency relation

G−1
iσ (iνn) = G−1

iσ (iνn) + �iσ (iνn) (27)

can be written as

Giσ (iνn) = 1

Nk

∑
k

Giiσ (k; iνn) =
∑

k∈IBZ

Giiσ (k; iνn)wk (28)

where the diagonal elements Giiσ (k; iνn) are found from inverting

G−1
i jσ (k; iνn) = (iνn + µ)δi j + hi j(k) − �i jσ (k; iνn) (29)

with the self-energy from equation (26).
In an ordinary single-site DMFT calculation the impurity problem is solved fixed on site U

and only the bath G is updated and determined self-consistenly via equation (27). It is however
desirable to solve the impurity problem with an updated or an effective Hubbard interaction.
The static impurity charge response, χi(iωm = 0), is used to construct the static impurity
screened interaction and polarization

Wi (iωm = 0) = Ui + Uiχi(iωm = 0)Ui (30)

Pi (iωm = 0) = U−1
i − W−1

i (iωm = 0) (31)

where Ui is the effective Hubbard on-site interaction used for the solution of the impurity
problem at site i . Then the full polarization kernel can be written, using equation (21),

Pi j (q; iωm) = PGW
i j (q; iωm) − δi j

1

Nk

∑
k

PGW
i j (k; iωm) + Pi(iωm = 0)

= PGW
i j (q; iωm) − δi j

∑
k∈IBZ

PGW
i j (k; iωm)wk + Pi (iωm = 0) (32)

a relation analogous to equation (26). Then the local screened interaction reads

1

Nk

∑
k

Wii (k; iωm = 0) =
∑

k∈IBZ

Wii (k; iωm = 0)wk (33)

where the diagonal-elements Wii (k; iωm = 0) are found from inverting

W−1
i j (k; iωm = 0) = U−1

i δi j − Pi j (k; iωm = 0). (34)

Note that here the bare U is used (the same for all sites Ui = U ). In the case when hopping to
neighbours is allowed we have to substitute the diagonal term U−1

i δi j with the inverse of the
bare Coulomb matrix(

U + 4V ′ cos kx cos ky 2V (cos kx + cos ky)

2V (cos kx + cos ky) U + 4V ′ cos kx cos ky

)
. (35)

Finally the updated effective interaction is found from the self-consistency relation

U−1
i = 1

/∑
k

Wii (k; iωm = 0)/Nk + Pi (iωm = 0) (36)
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a relation analogous to equation (27); however, only the static value of U−1 is used in the
solution of the impurity problem.

The spectral function is given by

A(k; ω) = − 1

Nτ π
Im

∑
σ

∑
i j

Gi jσ (k; ω) (37)

where Nτ = 2 in the antiferromagnetic (AF) case. In order to obtain the Green’s function on the
real energy axis, we use the Pade approximation for the self-energy �i jσ(k; iνn) → �i jσ (k; ω).

In order to study the stability of different phases, the total energy (per site) is calculated
using

E = Tr{h(k)G(k; iνn)} + 1
2 Tr{�(k; iνn)G(k; iνn)} (38)

where

Tr ≡ 1

β

∑
n

1

Nk

∑
k

1

Nτ

∑
i

∑
σ

. (39)

The hopping and self-energy matrices are given in equations (24), (26) and the Green’s function
matrix is found by inverting equation (29).

2.3. Computational details

Some care has to be taken when performing the Matsubara sums for the polarization bubble
and the self-energy in equations (21), (25). The bubble can be written as

PGW
i jσ (q; iωm) = 1

β

∑
n�0

1

Nk

∑
k

[Gi jσ (q + k; iωm + iνn)G jiσ (k; iνn)

+ Gi jσ (q + k; iωm + iν−n−1)G∗
j iσ (k; iνn)] (40)

where we have used that G(iν−n) = G∗(iνn−1).5 The polarization is real valued on the
imaginary axis (even Matsubara frequencies) and the diagonal part (i = j ) is negative;
PGW

i j (q; iωm) ∼ δi j/(iωm)2 for large ωm . We note that for large n the first term behaves
as

δi j
1

β

∑
n

1

i(ωm + νn)iνn
. (41)

This is however not the case for the second term, yet we find that the following procedure is
appropriate. If the Matsubara sum is done for all frequencies on the imaginary axis the result
is −β/4 for m = 0, otherwise zero. We have subtracted the term δi j/β

∑
n 1/ i(ωm + νn)iνn in

equation (40) (where, of course, the sum is done for finite n) and consequently added −δi jβ/4.
The second term, however, is large whenever (m −n −1) is around zero, due to G(m −n −1),
even if G∗(n) is decaying for large n. Therefore the upper limit for the n-sum in equation (40)
is chosen to depend on m. Thus we evaluate

PGW
i jσ (q; iωm) = 1

β

Np(m)∑
n�0

1

Nk

∑
k

[
Gi jσ (q + k; iωm + iνn)G jiσ (k; iνn) +

× Gi jσ (q + k; iωm + iν−n−1)G∗
j iσ (k; iνn)

− δi j

{
1

i(ωm + νn)iνn
+

1

i(ωm + ν−n−1)(iνn)∗

}]
− δ(ωm)δi jβ/4. (42)

5 The polarization operator obeys P(m) = ∑
n G(n)G(n+m) = ∑

n G∗(−n)G∗(−n−m) = ∑
n G∗(n)G∗(n−m) =

[
∑

n G(n)G(n − m)]∗ = P(−m)∗. The self-energy operator obeys �(n) = ∑
m G(n − m)W (m) = ∑

m G∗(−n +
m)W∗(−m) = ∑

m G∗(−n − m)W∗(m) = [
∑

m G(−n − m)W (m)]∗ = �(−n)∗.
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where Np(m) = NP + m. The polarization is calculated as described above for m = 0, Nh ,
whereas for m = Nh + 1, Ng we fit to

PGW
i j (q; iωm) = δi j

P0

(iωm)2
(43)

where P0 is a positive constant chosen for a continuous match.
The correlated GW self-energy is given by

�c
i jσ (q; iνn) = − 1

β

Ns (n)∑
m�0

1

Nk

∑
R

∑
k∈IBZ

[Gi jσ (q − Rk; iνn − iωm)W c
i j(k; iωm)

+ Gi jσ (q − Rk; iνn + iωm+1)(W c)∗i j(k; iωm+1)]. (44)

The first term is large whenever (m − n) is around zero, due to G(m − n), even if the screened
interaction is decaying for large m. This means that the upper limit for the m-sum should
depend on n. We have performed the sum for m = 0, Ns(n) where Ns (n) = NS + n.

The impurity (Anderson Hamiltonian) is solved using the updated effective U , not
the bare U . To be consistent, the localized level in the impurity model is updated using
εd = −µ = −(U/2 + �µ). In the half-filled case �µ = 0 (hole doping �µ < 0). We have
scaled the bath G−1 as well as the impurity self-energy �iσ . We have

G−1
i jσ (k; iνn) = (iνn + µ)δi j + hi j(k) − �i jσ (k; iνn)

= (iνn + U/2 + �µ − �iσ (iνn))δi j + hi j (k) − �GW
i jσ (k; iνn)

= (iνn + �µ − [�iσ (iνn) − U/2])δi j + hi j(k) − �GW
i jσ (k; iνn)

= (iνn + �µ − �̃iσ (iνn))δi j + hi j (k) − �GW
i jσ (k; iνn). (45)

The GW self-energy includes the double-counting term. We also have

G−1
iσ (Ns , iνn) = (iνn − εd) −

Ns −1∑
k=1

V 2
ikσ

iνn − εikσ

= (iνn + µ) −
Ns−1∑
k=1

V 2
ikσ

iνn − εikσ

= (iνn + U/2 + �µ) −
Ns−1∑
k=1

V 2
ikσ

iνn − εikσ

. (46)

Thus

G̃−1
iσ (Ns , iνn) = (iνn + �µ) −

Ns−1∑
k=1

V 2
ikσ

iνn − εikσ

(47)

with G̃−1 ≡ G−1 − U/2. The self-consistency relation

G−1
iσ (iνn) = G−1

iσ (iνn) + �iσ (iνn)

G−1
iσ (iνn) − U/2 = G−1

iσ (iνn) + �iσ (iνn) − U/2
G̃−1

iσ (iνn) = G−1
iσ (iνn) + �̃iσ (iνn).

(48)

We note that the Hartree–Fock (impurity) self-energy can be written as

�HF
iσ = Uni−σ . (49)

In the half-filled case ni−σ = 1/2 for all sites i and spin-channels, so �̃iσ (iνn) is the impurity
self-energy with the static Hartree–Fock part removed.
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Figure 1. Imaginary part of the site-diagonal Green’s function at the �-point for Ns = 4 and 6.
Parameters used for DMFT + GW: Nk = 33, Ng = 512, Nh = 128 and NP = NS = 64.
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Figure 2. Imaginary part of the site-diagonal Green’s function at the �-point. Parameters used for
DMFT + GW: Nk = 33, Ng = 512, Nh = 128 and NP = NS = 64.

Iterative steps:

(1) For each site i in the unit cell and spin-channel σ , we have to solve an impurity problem.
The Anderson Hamiltonian, which is defined by εd , {εikσ , Vikσ } and the effective Hubbard
Ui , is solved in order to get the impurity Green’s function Giσ and the static response
χi(iωm = 0). Using the response we can calculate the screened interaction for the
impurity, Wi (iωm = 0) = Ui + Uiχi(iωm = 0)Ui , as well as the impurity polarization,
Pi (iωm = 0) = U−1

i − W−1
i (iωm = 0).

(2) Derive the (scaled) impurity self-energy from �̃iσ (iνn) = G̃−1
iσ (iνn) − G−1

iσ (iνn). Here we
use the bath Green’s function from the previous iteration. In the first iteration we have to
guess the Anderson (bath) parameters as well as the bath Green’s function.

(3) With the impurity self-energy we construct (�GW
i jσ (k; iνn) from the previous iteration,

which includes the double-counting term for i = j )

G−1
i jσ (k; iνn) = (iνn + �µ − �̃iσ (iνn))δi j + hi j(k) − �GW

i jσ (k; iνn). (50)
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Figure 3. Real part of the site-non-diagonal Green’s function at the �-point. Parameters used for
DMFT + GW: Nk = 33, Ng = 512, Nh = 128 and NP = NS = 64.
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Figure 4. Real part of the polarization function at the �-point. The static impurity contribution is
P1(iωm = 0) = −0.47. Parameters used for DMFT + GW: Nk = 33, Ng = 512, Nh = 128 and
NP = NS = 64.

Using Gi jσ(k; iνn) we construct the updated GW self-energy to be used in the next iteration
and then we calculate the local Green’s function

∑
k Giiσ (k; iνn) using the impurity self-

energy and the updated GW self-energy. We also calculate the local screened interaction∑
k Wii (k; iωm = 0).

(4) Update the bath Green’s function using G̃iσ (iνn) = [1/
∑

k Giiσ (k; iνn)+�̃iσ (iνn)]−1 and
the effective interaction using Ui = [1/

∑
k Wii (k; iωm = 0) + Pi (iωm = 0)]−1.

(5) Mix old (bath G̃ used in step 2) and new (bath G̃ from step 4). The same mixing for the
old effective interaction (U used in step 1) and the new (U from step 4).

(6) The mixed bath Green’s function G̃−1 is then fitted (G̃−1
iσ (iν) ≈ G̃−1

iσ (Ns , iν)) in order to
determine the updated parameters {εikσ , Vikσ }.

(7) Now we have a new set of parameters (which defines the impurity problem) so we go back
to step 1. We also have a new bath G̃ to be used in step 2. At self-consistency the Green’s
function obtained from the impurity problem is equal to the local one obtained from∑

k Giiσ (k; iνn) and the impurity screened interaction is identical to
∑

k Wii (k; iωm = 0).
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Figure 5. Real part of the site-diagonal (correlated) screened interaction at the �-point. The bare
Hubbard U has been subtracted. The impurity screened interaction is 0.5 and the effective Hubbard
U = 0.7. Parameters used for DMFT + GW: Nk = 33, Ng = 512, Nh = 128 and NP = NS = 64.
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Figure 6. Real part of the site-non-diagonal screened interaction at the �-point. Parameters used
for DMFT + GW: Nk = 33, Ng = 512, Nh = 128 and NP = NS = 64.

3. Results and discussion

We use a simple model system as a test of the feasibility of the method and therefore consider
a one-band Hubbard model. It is worth pointing out that we are mainly interested in how
properties, derived using the DMFT, change when GW effects are incorporated as well as the
stability of the iterative procedure. At self-consistency we have access to the full self-energy
and polarization operator as well as G and U . In this work we focus on the PM solution at
half-filling (one electron per site) but not too close to the metal–insulator transition. We believe
that a careful analysis of the fictitious temperature and the number of bath sites is not so crucial
when the system is quite far from the metal–insulator transition. All results presented here
will be for four bath sites (Ns = 4). The system studied consists of two sites in the unit cell
(denoted 1 and 2) and we impose no constraints on different sites and spin-channels, i.e. in
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Figure 7. Real and imaginary parts of the site-diagonal screened interaction at the �-point. We
used an artificial broadening of 0.5. Parameters used for DMFT + GW: Nk = 33, Ng = 512,
Nh = 128 and NP = NS = 64.
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Figure 8. Real (solid line) and imaginary (dashed line) part of the impurity response function
(site 1) defined in equation (18) for the effective impurity. Parameters used for DMFT + GW:
Nk = 33, Ng = 512, Nh = 128 and NP = NS = 64.

the paramagnetic case we will obtain four identical solutions. If the system initially is in the
metallic PM phase, the system can during the iterative procedure end up stable in the insulator
AF phase when convergence is reached. Such a scenario is of course not possible if only one
site and spin is considered per unit cell. We will assume that all energies are given in eV.

3.1. 1D chain

Although a Luttinger liquid, we will consider the 1D chain (bandwidth 4) and we have chosen
U = 2 and 14 as prototypes for a metal and an insulator respectively. We have checked
the convergence with respect to the number of bath-sites. In figure 1 the imaginary part of
the on-site lattice Green’s function is displayed as a function of imaginary (odd Matsubara)
frequencies corresponding to the inverse temperature β. A convergence test with respect to the
number of points in the 1BZ in addition to the energy-range parameters (Ng , Nh , NP and NS
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Figure 9. Real and imaginary parts of the impurity self-energy (site 1 and spin up) for a typical
metal. We used an artificial broadening of 0.75. Parameters used for DMFT: Nk = 33 and
Ng = 512.
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Figure 10. Real and imaginary parts of the impurity self-energy (site 1 and spin up) for a typical
metal. We used an artificial broadening of 0.75. Parameters used for DMFT + GW: Nk = 33,
Ng = 512, Nh = 128 and NP = NS = 64.

defined in section 2.3) has been performed as well. We will first discuss a typical metal. Apart
from the on-site interaction (short-ranged) U the present GW approach also contains the off-
site (long-ranged) interactions V and V ′ (see equation (35)). Quite naturally the significance
of the GW effects is in some sense tuned by the magnitude of these off-site interactions. We
have chosen the parameters V = 1.5 and V ′ = 1.2 in the metal case U = 2. This choice of
parameters is not, at this point, dictated by any physical grounds. However, we believe that
parameters chosen are in a such a range that at least some comprehensive statements can be
made. The difference between using β = 10 or 20 is very small (the number of Matsubara
energy points in the low temperature case was increased correspondingly) and if not stated
otherwise the inverse temperature is β = 10.

In figures 2 and 3 the k-dependent lattice Green’s functions are shown in the low-energy
region. In the DMFT case the total self-energy is merely composed of the local impurity
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Figure 11. Real and imaginary parts of the impurity self-energy (site 1 and spin up) for a typical
insulator. We used an artificial broadening of 0.75. Parameters used for DMFT: Nk = 33 and
Ng = 512.
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Figure 12. Real and imaginary parts of the impurity self-energy (site 1 and spin up) for a typical
metal. Parameters used for DMFT: Nk = 33 and Ng = 512.

(k-independent) self-energy defined in equation (14) (�GW = 0). Obviously, the inclusion
of the GW self-energy is quite substantial for small energies. We would like to stress
that the total self-energy (equation (26)) exhibits non-diagonal site contributions originating
from the GW kernel, influencing the Green’s function and consequently the spectral
properties. The displayed behaviour of the Green’s function has been observed by several
authors [20, 50, 51, 53]. Capone et al [53] have found, in the metallic region, that the inclusion
of a cluster DMFT approach will give rise to a dip in the imaginary part of the on-site Green’s
function, albeit characteristic of an insulator.

The GW derived polarization (equation (40)) and screened interaction (correlated part)
(equation (23)) are displayed in figures 4–6 as a function of imaginary (even Matsubara)
frequencies. Note that if the full polarization in equation (32) is required one has to correct
for double counting and merely add the static impurity contribution (P1(iωm = 0) = −0.47).
For large Matsubara energies the diagonal part approaches 2V ′ and the non-diagonal part 2V
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Figure 13. Local density of states for site 1 and spin up. The chemical potential corresponds to
energy zero. We introduced an artificial broadening of 0.25. Parameters used for DMFT + GW:
Nk = 33, Ng = 512, Nh = 128 and NP = NS = 64.
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Figure 14. Spectral function at the �-point. The chemical potential corresponds to energy zero.
The solid line corresponds to the DMFT + GW case and the dashed line to the DMFT case. We
used an artificial broadening of 0.5. Parameters used: Nk = 33, Ng = 512, Nh = 128 and
NP = NS = 64.

as can be derived using equation (24), which is numerically confirmed. In figure 7 we show
the screened interaction at the �-point along the real axis using the Pade approximation. We
observe that the static value ReW (0) is merely a constant below the main excitation peak and
slightly larger in the case of non-diagonal screening. However, it is well known that in the
RPA the screening is overestimated at short distances. From a physical point of view this
fact is easily understandable: a positive hole is surrounded or screened by a too tightly drawn
electron cloud, due to the fact that exchange and correlation effects are neglected among the
screening electrons.

The self-consistent values of the impurity screened potential and the effective Hubbard
on-site interaction (both defined in equation (30)) were found to be W (iωm = 0) = 0.5 and
U = 0.7 respectively. Thus at self-consistency, the effective impurity problem offers an on-site
interaction which is more than a factor of two smaller than the bare U = 2. For illustration
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Figure 15. Spectral function at the X-point. The chemical potential corresponds to energy zero.
The solid line corresponds to the DMFT + GW case and the dashed line to the DMFT case. We
used an artificial broadening of 0.5. Parameters used: Nk = 33, Ng = 512, Nh = 128 and
NP = NS = 64.
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Figure 16. Quasiparticle dispersion in the �–X direction. Parameters used: Nk = 33, Ng = 512,
Nh = 128 and NP = NS = 64.

we show the charge impurity response function along the real axis in figure 8 derived using
the effective Hubbard U = 0.7.

As discussed previously, in the single-site DMFT case the solution to the impurity model is
extracted using the bare Hubbard U = 2; however, in the DMFT + GW scenario the impurity
model is solved with the effective (weaker) interaction U . The magnitude of the impurity
self-energy scales with the size of the on-site interaction, making it somewhat cumbersome to
compare different impurity self-energies obtained with different on-site interaction strengths.
However, the quantity one really should compare is the total self-energy entering the theory;
i.e., the U = 2 impurity DMFT single-site self-energy should be compared with the full self-
energy in equation (26). In this work a critical comparison will not be made; we briefly discuss
spectral properties, which however strongly depend on the self-energy.

Prior to the discussion about spectral properties we intend to make some statements about
the derived self-energies. In all the cases studied we have observed the characteristics of a metal
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Figure 17. Spectral function (DMFT + GW) at the �-point. The chemical potential corresponds
to energy zero. The solid line corresponds to V = 1.5 and V ′ = 1.2 and the dashed line to
V = V ′ = 0. We used an artificial broadening of 0.5. Parameters used: Nk = 33, Ng = 512,
Nh = 128 and NP = NS = 64.
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Figure 18. Imaginary part of the site-diagonal Green’s function (DMFT + GW) at the �-point.
Parameters used for DMFT + GW: Nk = 33, Ng = 512, Nh = 128 and NP = NS = 64.

or an insulator [12]: Im�(iω) < 0 increases linearly or diverges when ω → 0+ respectively.
Regarding the magnitude of the GW self-energy it depends strongly on the k-point, but in
general the non-diagonal Re�GW

12 is quite large and Im�GW
11 is smaller (in comparison with

relevant quantities).
It is a delicate matter to extract real frequency dynamical information from imaginary

axis data. The commonly used quantum Monte Carlo impurity solver uses maximum entropy
based methods [54]. In the present work, adopting the Lanczos routine for solving the impurity
problem, we used the Pade approximation when performing the analytical continuation.
For example, in order to obtain the GW self-energy and spectral functions we must do an
analytical continuation from the imaginary axis (iω → (ω + iδ)). However, the impurity self-
energy on the real axis can be extracted using the self-consistency relation in equation (27).
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Figure 19. Spectral function at the �-point. The chemical potential corresponds to energy zero.
The solid line corresponds to the DMFT + GW case and the dashed line to the DMFT case. We
used an artificial broadening of 0.5. Parameters used: Nk = 33, Ng = 512, Nh = 128 and
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Figure 20. Imaginary part of the site-diagonal Green’s function at the �-point. Parameters used
for DMFT + GW: Nk = 169, Ng = 512, Nh = 128 and NP = NS = 64.

The corresponding results are shown in figures 9, 11 (DMFT) and figure 10 (DMFT + GW).
In the DMFT + GW scenario the impurity is solved with an effective Hubbard interaction
U = 0.7, reflected in a substantial reduction in the magnitude. As a comparison with figure 9
the self-energy derived using the Pade approximation is displayed in figure 12.

In the metallic case the self-energy exhibits the Fermi-liquid behaviour: Re�(ω) ∼
(1−1/Z)ω (or equivalently Im�(iω) ∼ (1−1/Z)ω) and Im�(ω) ∼ −ω2 for ω close to zero
where

Z =
(

1 − ∂Re�(ω)

∂ω

∣∣∣∣
ω=0

)−1

(51)

denotes the quasiparticle renormalization factor. In the insulator case the slope of Re�(ω)
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Figure 21. Real part of the site-non-diagonal Green’s function at the �-point. Parameters used for
DMFT + GW: Nk = 169, Ng = 512, Nh = 128 and NP = NS = 64.
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Figure 22. Real part of the polarization function at the �-point. The static impurity contribution
is P1(iωm = 0) = −1.1. Parameters used for DMFT + GW: Nk = 169, Ng = 512, Nh = 128
and NP = NS = 64.

changes sign (Re�(ω) → 1/ω for ω → 0) and Im�(ω) is peaked at the chemical potential
and zero in the gap,6 as evident from figure (11).

6 The Kramers–Kronig (KK) relations can be written as

Re �(ω) = − 1

π

∫
dω′ Im�(ω′)

ω − ω′

Im �(ω) = 1

π

∫
dω′ Re�(ω′)

ω − ω′
(52)

which are very important in connecting the real and imaginary parts of a given complex function. With the knowledge
of the self-energy on the whole real axis one can perform an analytical continuation to the imaginary axis

�(z) = − 1

π

∫
dω′ Im�(ω′)

z − ω′

for any z in the upper half-plane. It is readily shown that Re�(iω) = 0 and Im�(iω) = −Im�(−iω) if Im�(ω) is
symmetric around ω = 0. Furthermore, it can be shown that the slopes of Re�(ω) and Im�(iω) are equal for small
ω and Im�(iω) ∼ δ(ω) if the spectral function has zero amplitude at the chemical potential ω = 0.
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Figure 23. Real part of the site-diagonal (correlated) screened interaction at the �-point. The
bare Hubbard U has been subtracted. Parameters used for DMFT + GW: Nk = 169, Ng = 512,
Nh = 128 and NP = NS = 64.

0

1.0

2.0

3.0

4.0

5.0

0 2 4 6 8 10

U=4

Ns =4
β =10

V=1.5
V'=0.75

ων (eV)

R
e 

W
12

Figure 24. Real part of the site-non-diagonal screened interaction at the �-point. Parameters used
for DMFT + GW: Nk = 169, Ng = 512, Nh = 128 and NP = NS = 64.

We next discuss spectral properties. In order to achieve the local density of states (LDOS)
we have solved the impurity model on the real axis and then extracted Im Giσ (ω). As can be
seen in figure 13, the LDOS is symmetric (half-filling n = 1) and shows the typical Fermi
metallic characteristics: a quasiparticle peak surrounding the two Hubbard bands [12].

With the aid of the Pade approximation and equation (37) we calculate the spectral
functions. The zone-centre spectral function is visualized in figure 14. A significant change of
the quasiparticle peak position is clearly seen at the�-point,where the downward shift is around
0.4. The corresponding dispersion in the �–X direction is displayed in figure 16. Interestingly,
when only one iteration with the GW kernel is performed on top of a self-consistent DMFT
calculation, the dispersion essentially coincides with the DMFT one.

To obtain a notable effect with the GW kernel, one has in general to include the long-
range part of the bare Coulomb potential and consider nearest (V ) and next nearest neighbour
interaction (V ′). For example, the parameter set V = V ′ = 0 gives a quasiparticle peak
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Figure 25. Real and imaginary parts of the site-diagonal screened interaction at the �-point. We
used an artificial broadening of 0.5. Parameters used for DMFT + GW: Nk = 169, Ng = 512,
Nh = 128 and NP = NS = 64.
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Figure 26. Real and imaginary parts of the GW self-energy including the double-counting term
(site 1 and spin up) for a typical metal. We used an artificial broadening of 0.5. Parameters used
for DMFT + GW: Nk = 33, Ng = 512, Nh = 128 and NP = NS = 64.

position shifted only by 0.1 compared to the DMFT situation (the shift is 0.4 with V = 1.5
and V ′ = 1.2) which is realized from figure 17. If one compares the lattice Green’s function
in figures 2 and 18, it is obvious that the DMFT and DMFT + GW with the long-range part
excluded (V = V ′ = 0) are quite similar.

Next we briefly consider a 1D insulator using the parameter-set U = 14, V = 3 and
V ′ = 2. In contrast to the metal case the screening is less effective, giving the self-consistent
impurity screened interaction to be 13.7 and the effective Hubbard U = 13.9. The similarities
between the screened and bare interactions indicate that the off-site hopping parameters V
and V ′ are too small to give rise to a notable effect, which is indeed confirmed by the spectral
function shown in figure 19. Furthermore, it is worth noting that in the strong insulator
case the imaginary part of the (site-diagonal) impurity self-energy is diverging for small iω
(�(iω) → 1/iω), making at least the significance of the diagonal GW self-energy negligible.
However, non-diagonal GW contributions can influence the spectral functions.
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Figure 27. Local density of states for site 1 and spin up. The chemical potential corresponds to
energy zero. We introduced an artificial broadening of 0.25. Parameters used for DMFT + GW:
Nk = 169, Ng = 512, Nh = 128 and NP = NS = 64.
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Figure 28. Spectral function at the �-point. The chemical potential corresponds to energy zero.
The solid line corresponds to the DMFT + GW case and the dashed line to the DMFT case. We
used an artificial broadening of 0.5. Parameters used: Nk = 169, Ng = 512, Nh = 128 and
NP = NS = 64.

3.2. 2D square lattice

The bandwidth of the 2D square lattice is 8 and we have chosen U = 4 and 18 as prototypes
for a metal and an insulator respectively. As in 1D Ns = 4 is sufficient. We will first discuss
the metal case. The reasoning and organization follows closely the set-up in the previous
section. We have chosen the parameters V = 1.5 and V ′ = 0.75 in the metal case U = 4. In
figures 20 and 21 the lattice Green’s function is shown whereas the corresponding polarization
and screened interaction are displayed in figures 22–24. At self-consistency the impurity
screened interaction is 0.7 and the effective Hubbard U = 2.4, strongly reduced compared
to the bare values. We stress that the amount of screening that is taking place is in general
dependent on the non-locality parameters V and V ′, which in this work is chosen arbitrarily.
In 2D the large iω limit is numerically satisfied: the diagonal part approaches 4V ′ and the
non-diagonal part 4V respectively. It is worth mentioning that the overall magnitude of the
polarization function PGW(iω) decreases for increasing U . As a consequence, the overall
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Figure 29. Imaginary part of the site-diagonal Green’s function at the �-point. Parameters used
for DMFT + GW: Nk = 169, Ng = 512, Nh = 128 and NP = NS = 64.
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Figure 30. Real part of the site-non-diagonal Green’s function at the �-point. Parameters used for
DMFT + GW: Nk = 169, Ng = 512, Nh = 128 and NP = NS = 64.

magnitude of the correlated part of the screened interaction W c(iω) increases for increasing
U . As a comparison to the 1D case, the screened interaction on the real axis at the �-point is
shown in figure 25.

As an illustration we display in figure 26 the GW self-energy, which clearly exhibits
Fermi-liquid characteristics, derived using equation (44).

The metallic LDOS and a typical quasiparticle spectral function are shown in figures 27, 28.
The downward shift of the quasiparticle position is consistent with the scenario observed in
the 1D case.

Let us finally consider the strong insulator case U = 18. We have chosen the parameters
V = 4 and V ′ = 3 which can be considered as a substantial off-site interaction; however,
there exists no large difference in the DMFT Green’s function compared to the DMFT + GW
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Figure 31. Spectral function at the �-point. The chemical potential corresponds to energy zero.
The solid line corresponds to the DMFT + GW case and the dashed line to the DMFT case. We
used an artificial broadening of 0.5. Parameters used: Nk = 169, Ng = 512, Nh = 128 and
NP = NS = 64.

one (see figures 29, 30). The impurity screening is found to be W (iωm = 0) = 16.9 and the
effective Hubbard U = 17.1, implying a reduced bandgap.

The corresponding spectral function is shown in figure 31. We note that in the strong
insulator case the Hubbard gap (∼ U) is indeed somewhat reduced due to the inclusion of the
GW self-energy.

4. Concluding remarks

In the present study full self-consistency is achieved, including the non-local GW self-energy,
in the local single-site DMFT approach and the applicability of the method is tested for a
model system. Eventually at self-consistency the full self-energy and polarization operator
are obtained, from which e.g. the full screened interaction is accessible. Far from the metal–
insulator transition the combination of the GW method and the single-site DMFT is from a
numerical point of view fast and stable, even when a simple linear mixing scheme is utilized.
Changes with respect to DMFT are in some cases substantial, and are related to the long-
rangedness of the GW kernel, specified by two hopping parameters.

Next we will study the 2D metal–insulator transition as well as doping away from half-
filling.
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